A Relative Theory for Leibniz n-Algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forum Mathematicum Leibniz N-algebras

A Leibniz n-algebra is a vector space equipped with an n-ary operation which has the property of being a derivation for itself. This property is crucial in Nambu mechanics. For n ˆ 2 this is the notion of Leibniz algebra. In this paper we prove that the free Leibniz …n‡ 1†algebra can be described in terms of the n-magma, that is the set of n-ary planar trees. Then it is shown that the n-tensor ...

متن کامل

CARTAN SUBALGEBRAS OF LEIBNIZ n-ALGEBRAS

The present paper is devoted to the investigation of properties of Cartan subalgebras and regular elements in Leibniz n-algebras. The relationship between Cartan subalgebras and regular elements of given Leibniz n-algebra and Cartan subalgebras and regular elements of the corresponding factor n-Lie algebra is established. 1 Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D-...

متن کامل

Leibniz Algebras and Lie Algebras

This paper concerns the algebraic structure of finite-dimensional complex Leibniz algebras. In particular, we introduce left central and symmetric Leibniz algebras, and study the poset of Lie subalgebras using an associative bilinear pairing taking values in the Leibniz kernel.

متن کامل

Cup-product for Leibniz Cohomology and Dual Leibniz Algebras

For any Lie algebra g there is a notion of Leibniz cohomology HL(g), which is defined like the classical Lie cohomology, but with the n-th tensor product g⊗n in place of the n-th exterior product Λ g. This Leibniz cohomology is defined on a larger class of algebras : the Leibniz algebras (cf. [L1], [L2]). A Leibniz algebra is a vector space equipped with a product satisfying a variation of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebra Colloquium

سال: 2016

ISSN: 1005-3867,0219-1733

DOI: 10.1142/s1005386716000249